Efficient rotation- and scale-invariant texture analysis

نویسندگان

  • Kam-Keung Fung
  • Kin-Man Lam
چکیده

Texture analysis plays an important role in content-based image retrieval and other areas of image processing. It is often desirable for the texture classifier to be rotation and scale invariant. Furthermore, to enable real-time usage, it is desirable to perform the classification efficiently. Toward these goals, we propose several enhancements to the multiresolution Gabor analysis. The first is a new set of kernels called Slit, which can replace Gabor wavelets in applications where high computational speed is desired. Compared to Gabor, feature extraction using Slit requires only 11 to 17% of the numeric operations. The second is to make the features more rotation invariant. We propose a circular sum of the feature elements from the same scale of the feature vector. This has the effect of averaging the feature vector from all orientations. The third is a slide-matching scheme for the final stage of the classifier, which can be applied to different types of distance measures. Distances are calculated at slightly different scales, and the smallest value is used as the actual distance measures. Experimental results using different image databases and distance measures show distinct improvements over existing schemes. © 2010 SPIE and IS&T. [DOI: 10.1117/1.3495999]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotation and scale invariant texture classification

Texture classification is very important in image analysis. Content based image retrieval, inspection of surfaces, object recognition by texture, document segmentation are few examples where texture classification plays a major role. Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and class...

متن کامل

Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification

Classification of texture images, especially those with different orientation and scale changes, is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation and scale invariant texture classification using log-polar wavelet signatures. The rotation and scale invariant feature extraction for a given image involves applying a l...

متن کامل

Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns

This paper presents a theoretically very simple yet efficient multiresolution approach to gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns termed ‘uniform’ are fundamental properties of local image texture, and their...

متن کامل

Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns

This paper presents a theoretically very simple yet efficient approach for gray scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The proposed approach is very robust in terms of gray scale variations, since the operators are by definition invariant against any monotonic transformation of th...

متن کامل

Rotation and Scale-Invariant Texture Classification Using Gabor Transform

Texture classification is one of the problems in the field of texture analysis. In this paper an efficient method of texture classification using Gabor transform is proposed, which considers the effect of rotation and scale variances of texture images. Due to its optimal localization properties in both spatial and frequency domain, the Gabor transform has been recognized as a very useful tool i...

متن کامل

A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification

This paper presents generalizations to the gray scale and rotation invariant texture classification method based on local binary patterns that we have recently introduced. We derive a generalized presentation that allows for realizing a gray scale and rotation invariant LBP operator for any quantization of the angular space and for any spatial resolution, and present a method for combining mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Electronic Imaging

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2010